Simple, Fast Semantic Parsing with a Tensor Kernel

نویسنده

  • Daoud Clarke
چکیده

We describe a simple approach to semantic parsing based on a tensor product kernel. We extract two feature vectors: one for the query and one for each candidate logical form. We then train a clasifier using the tensor product of the two vectors. Using very simple features for both, our system achieves an average F1 score of 40.1% on the WebQuestions dataset. This is comparable to more complex systems but is simpler to implement and runs faster.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Tree kernel-based semantic role labeling with enriched parse tree structure

Shallow semantic parsing assigns a simple structure (such as WHO did WHAT to WHOM, WHEN, WHERE, WHY, and HOW) to each predicate in a sentence. It plays a critical role in event-based information extraction and thus is important for deep information processing and management. This paper proposes a tree kernel method for a particular shallow semantic parsing task, called semantic role labeling (S...

متن کامل

Convolution Kernel over Packed Parse Forest

This paper proposes a convolution forest kernel to effectively explore rich structured features embedded in a packed parse forest. As opposed to the convolution tree kernel, the proposed forest kernel does not have to commit to a single best parse tree, is thus able to explore very large object spaces and much more structured features embedded in a forest. This makes the proposed kernel more ro...

متن کامل

A Kernel-based Approach to Learning Semantic Parsers

Semantic parsing involves deep semantic analysis that maps natural language sentences to their formal executable meaning representations. This is a challenging problem and is critical for developing user-friendly natural language interfaces to computing systems. Most of the research in natural language understanding, however, has mainly focused on shallow semantic analysis like case-role analys...

متن کامل

Fast Methods for Kernel-Based Text Analysis

Kernel-based learning (e.g., Support Vector Machines) has been successfully applied to many hard problems in Natural Language Processing (NLP). In NLP, although feature combinations are crucial to improving performance, they are heuristically selected. Kernel methods change this situation. The merit of the kernel methods is that effective feature combination is implicitly expanded without loss ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Linguistics Appl.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015